The commuting graph of bounded linear operators on a Hilbert space
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00386898" target="_blank" >RIV/67985840:_____/13:00386898 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jfa.2012.11.011" target="_blank" >http://dx.doi.org/10.1016/j.jfa.2012.11.011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2012.11.011" target="_blank" >10.1016/j.jfa.2012.11.011</a>
Alternative languages
Result language
angličtina
Original language name
The commuting graph of bounded linear operators on a Hilbert space
Original language description
An operator T on the separable infinite-dimensional Hilbert space is constructed so that the commutant of every operator which is not a scalar multiple of the identity operator and commutes with T coincides with the commutant of T. On the other hand, itis shown that for several classes of operators it is possible to construct a finite sequence of operators, starting at a given operator from the class and ending in a rank-one projection such that each operator in the sequence commutes with its predecessor. The classes which we study are: finite-rank operators, normal operators, partial isometries, and C0 contractions. It is also shown that for any given set of yes/no conditions between points in some finite set, there always exist operators on a finite-dimensional Hilbert space such that their commutativity relations exactly satisfy those conditions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
—
Volume of the periodical
264
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
1068-1087
UT code for WoS article
000314133700007
EID of the result in the Scopus database
—