There are only two nonobtuse binary triangulations of the unit n-cube
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00387003" target="_blank" >RIV/67985840:_____/13:00387003 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.comgeo.2012.09.005" target="_blank" >http://dx.doi.org/10.1016/j.comgeo.2012.09.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.comgeo.2012.09.005" target="_blank" >10.1016/j.comgeo.2012.09.005</a>
Alternative languages
Result language
angličtina
Original language name
There are only two nonobtuse binary triangulations of the unit n-cube
Original language description
Triangulations of the cube into a minimal number of simplices without additional vertices have been studied by several authors over the past decades. For 3n7 this so-called simplexity of the unit cube In is now known to be 5,16,67,308,1493, respectively.In this paper, we study triangulations of In with simplices that only have nonobtuse dihedral angles. A trivial example is the standard triangulation into n! simplices. In this paper we show that, surprisingly, for each n3 there is essentially only oneother nonobtuse triangulation of In, and give its explicit construction. The number of nonobtuse simplices in this triangulation is equal to the smallest integer larger than n!(e-2).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190803" target="_blank" >IAA100190803: The finite element method for higher dimensional problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computational Geometry-Theory and Applications
ISSN
0925-7721
e-ISSN
—
Volume of the periodical
46
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
286-297
UT code for WoS article
000312467300009
EID of the result in the Scopus database
—