Real closures of models of weak arithmetic
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00388604" target="_blank" >RIV/67985840:_____/13:00388604 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00153-012-0311-x" target="_blank" >http://dx.doi.org/10.1007/s00153-012-0311-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00153-012-0311-x" target="_blank" >10.1007/s00153-012-0311-x</a>
Alternative languages
Result language
angličtina
Original language name
Real closures of models of weak arithmetic
Original language description
D'Aquino et al. have recently shown that every real-closed field with an integer part satisfying the arithmetic theory ISigma_4 is recursively saturated, and that this theorem fails if ISigma_4 is replaced by IDelta_0. We prove that the theorem holds ifISigma_4 is replaced by weak subtheories of Buss' bounded arithmetic: PV or Sigma^b_1-IND^{|x|_k}. It also holds for IDelta_0 (and even its subtheory IE_2) under a rather mild assumption on cofinality. On the other hand, it fails for the extension of IOpen by an axiom expressing the Bézout property, even under the same assumption on cofinality.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archive for Mathematical Logic
ISSN
0933-5846
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
1-2
Country of publishing house
DE - GERMANY
Number of pages
15
Pages from-to
143-157
UT code for WoS article
—
EID of the result in the Scopus database
—