Fermat's last theorem and Catalan's conjecture in weak exponential arithmetics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00481155" target="_blank" >RIV/67985840:_____/17:00481155 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/17:10369238 RIV/61384399:31140/17:00051179
Result on the web
<a href="http://dx.doi.org/10.1002/malq.201500069" target="_blank" >http://dx.doi.org/10.1002/malq.201500069</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/malq.201500069" target="_blank" >10.1002/malq.201500069</a>
Alternative languages
Result language
angličtina
Original language name
Fermat's last theorem and Catalan's conjecture in weak exponential arithmetics
Original language description
We study Fermat's last theorem and Catalan's conjecture in the context of weak arithmetics with exponentiation. We deal with expansions math formula of models of arithmetical theories (in the language math formula) by a binary (partial or total) function e intended as an exponential. We provide a general construction of such expansions and prove that it is universal for the class of all exponentials e which satisfy a certain natural set of axioms math formula. We construct a model math formula and a substructure math formula with e total and math formula (Presburger arithmetic) such that in both math formula and math formula Fermat's last theorem for e is violated by cofinally many exponents n and (in all coordinates) cofinally many pairwise linearly independent triples math formula. On the other hand, under the assumption of ABC conjecture (in the standard model), we show that Catalan's conjecture for e is provable in math formula (even in a weaker theory) and thus holds in math formula and math formula. Finally, we also show that Fermat's last theorem for e is provable (again, under the assumption of ABC in math formula) in math formula“coprimality for e''.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ17-04703Y" target="_blank" >GJ17-04703Y: Quadratic forms and numeration systems over number fields</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Logic Quarterly
ISSN
0942-5616
e-ISSN
—
Volume of the periodical
63
Issue of the periodical within the volume
3-4
Country of publishing house
DE - GERMANY
Number of pages
13
Pages from-to
162-174
UT code for WoS article
000414581800001
EID of the result in the Scopus database
2-s2.0-85033360515