A direct solver for finite element matrices requiring O(N log N) memory places
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00392419" target="_blank" >RIV/67985840:_____/13:00392419 - isvavai.cz</a>
Result on the web
<a href="http://www.math.cas.cz/am2013/proceedings/contributions/vejchodsky.pdf" target="_blank" >http://www.math.cas.cz/am2013/proceedings/contributions/vejchodsky.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A direct solver for finite element matrices requiring O(N log N) memory places
Original language description
We present a method that in certain sense stores the inverse of the stiffness matrix in O(N log N) memory places, where N is the number of degrees of freedom and hence the matrix size. The setup of this storage format requires O(N^(3/2)) arithmetic operations. However, once the setup is done, the multiplication of the inverse matrix and a vector can be performed with O(N log N) operations. This approach applies to the first order finite element discretization of linear elliptic and parabolic problems intriangular domains, but it can be generalized to higher-order elements, variety of problems, and general domains. The method is based on a special hierarchical enumeration of vertices and on a hierarchical elimination of suitable degrees of freedom. Therefore, we call it hierarchical condensation of degrees of freedom.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Applications of Mathematics 2013
ISBN
978-80-85823-61-5
ISSN
—
e-ISSN
—
Number of pages
15
Pages from-to
225-239
Publisher name
Matematický ústav AV ČR, v.v.i
Place of publication
Praha
Event location
Prague
Event date
May 15, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—