Integral equation method for the first and second problems of the Stokes system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00398062" target="_blank" >RIV/67985840:_____/13:00398062 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11118-013-9336-y" target="_blank" >http://dx.doi.org/10.1007/s11118-013-9336-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11118-013-9336-y" target="_blank" >10.1007/s11118-013-9336-y</a>
Alternative languages
Result language
angličtina
Original language name
Integral equation method for the first and second problems of the Stokes system
Original language description
Using the integral equation method we study solutions of boundary value problems for the Stokes system in Sobolev space in a bounded Lipschitz domain with connected boundary. A solution of the second problem is studied both by the indirect and the directboundary integral equation method. It is shown that we can obtain a solution of the corresponding integral equation using the successive approximation method. Then we study the first problem for the Stokes system by the direct integral equation method.But the corresponding integral equation is not uniquely solvable. We construct another uniquely solvable integral equation such that the solution of the new eqution is a solution of the original integral equation provided the first problem has a solution. Moreover, the new integral equation has a form g+Sg=f, where S is a contractive operator and we can solve it by the successive approximation.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F1304" target="_blank" >GAP201/11/1304: Flow of fluids in domains with variable geometry</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Potential Analysis
ISSN
0926-2601
e-ISSN
—
Volume of the periodical
39
Issue of the periodical within the volume
4
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
389-409
UT code for WoS article
000325632800006
EID of the result in the Scopus database
—