Phase equilibria in isotropic solids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00399540" target="_blank" >RIV/67985840:_____/13:00399540 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00161-012-0282-5" target="_blank" >http://dx.doi.org/10.1007/s00161-012-0282-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00161-012-0282-5" target="_blank" >10.1007/s00161-012-0282-5</a>
Alternative languages
Result language
angličtina
Original language name
Phase equilibria in isotropic solids
Original language description
The paper determines the forms of equations of equilibrium for stable coherent phase interfaces in isotropic solids. If the first phase satisfies the Baker Ericksen inequalities strictly and the principal stretches of the second phase differ from those of the first phase, one obtains the equality of three specific generalized scalar forces and of a generalized Gibbs function. The forms of these quantities depend on the signs of the increments of the principal stretches across the interface. The proof uses the rank 1 convexity condition for isotropic materials (Šilhavý in Proc. R. Soc. Edinb 129A:1081?1105, 1999) and is available only if the two phases are not too far from each other or if one of the two phases is a fluid (liquid). The result does not follow from the representation theorems for isotropic solids.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Continuum Mechanics and Thermodynamics
ISSN
0935-1175
e-ISSN
—
Volume of the periodical
25
Issue of the periodical within the volume
6
Country of publishing house
DE - GERMANY
Number of pages
8
Pages from-to
795-802
UT code for WoS article
000326245000007
EID of the result in the Scopus database
—