Existence of solutions of dynamic contact problems for elastic von Kármán-Donnell shells
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00399418" target="_blank" >RIV/67985840:_____/14:00399418 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Existence of solutions of dynamic contact problems for elastic von Kármán-Donnell shells
Original language description
We deal with an initial-boundary value problem describing perpendicular vibrations of a shell against a rigid inner obstacle. The shell is made of an elastic material. We assume the von Kármán-Donnell model describing moderately large deflections of themiddle surface of a shell.A weak (variational) formulation of the problem is in a form of the hyperbolic variational inequality. The case of a shell clamped on the boundary is considered.We solve the problem using the penalty method and the dual estimateof the acceleration term.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F12%2F0671" target="_blank" >GAP201/12/0671: Variational and numerical analysis in nonsmooth continuum mechanics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Shell Structures: Theory and Application : Proceedings of the 10th SSTA 2013 Conference
ISBN
978-1-138-00082-7
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
65-68
Publisher name
CEC Press
Place of publication
Boca Raton
Event location
Gdansk
Event date
Oct 16, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—