Continuous dependence of solutions of abstract generalized linear differential equations with potential converging uniformly with a weight
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00427479" target="_blank" >RIV/67985840:_____/14:00427479 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1186/1687-2770-2014-71" target="_blank" >http://dx.doi.org/10.1186/1687-2770-2014-71</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/1687-2770-2014-71" target="_blank" >10.1186/1687-2770-2014-71</a>
Alternative languages
Result language
angličtina
Original language name
Continuous dependence of solutions of abstract generalized linear differential equations with potential converging uniformly with a weight
Original language description
In this paper we continue our research on continuous dependence on a parameter of solutions to generalized linear differential equations. These equations are described by linear integral equations containing the abstract Kurzweil-Stieltjes integral. In particular, we are interested in the situation when the kernels of these equations need not have uniformly bounded variations. Our main goal is the extension of our previous results to the nonhomogeneous case. Applications to second order systems and to dynamic equations on time scales are included as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-06958S" target="_blank" >GA14-06958S: Singularities and impulses in boundary value problems for nonlinear ordinary differential equations</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Boundary Value Problems
ISSN
1687-2770
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
71
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
1-18
UT code for WoS article
000333623100001
EID of the result in the Scopus database
—