Topology design of elastic structures for a contact model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00430329" target="_blank" >RIV/67985840:_____/14:00430329 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-08025-3_6" target="_blank" >http://dx.doi.org/10.1007/978-3-319-08025-3_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-08025-3_6" target="_blank" >10.1007/978-3-319-08025-3_6</a>
Alternative languages
Result language
angličtina
Original language name
Topology design of elastic structures for a contact model
Original language description
Contact problems are very important in the engineering design and the correct interpretation of the physical phenomena, and its influence in this process, is of paramount importance for the engineers. In this paper we employ the topological derivative concept for optimum design problems in contact solid mechanics. A nonlinear contact model governed by a variational inequality is considered. Beside the theoretical developments, some computational examples are included. The influence of the parameters ofthe contact model in the optimal results for the structures is studied. The numerical results show that the proposed method of optimum design can be applied to a broad class of engineering problems.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Mathematical and computer analysis of the evolution processes in nonlinear viscoelastic fluid-like materials</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Optimization with PDE Constraints
ISBN
978-3-319-08024-6
Number of pages of the result
18
Pages from-to
203-220
Number of pages of the book
402
Publisher name
Springer
Place of publication
Heidelberg
UT code for WoS chapter
—