Inviscid incompressible limits on expanding domains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00431605" target="_blank" >RIV/67985840:_____/14:00431605 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1088/0951-7715/27/10/2465" target="_blank" >http://dx.doi.org/10.1088/0951-7715/27/10/2465</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/0951-7715/27/10/2465" target="_blank" >10.1088/0951-7715/27/10/2465</a>
Alternative languages
Result language
angličtina
Original language name
Inviscid incompressible limits on expanding domains
Original language description
We consider the inviscid incompressible limit of the compressible Navier-Stokes system on a large domain, the radius of which becomes infinite in the asymptotic limit. We show that the limit solutions satisfy the incompressible Euler system on the wholephysical space R3 as long as the radius of the domain is larger than the speed of acoustic waves inversely proportional to the Mach number. The rate of convergence is estimated in terms of the Mach and Reynolds numbers and the radius of the family of spatial domains.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinearity
ISSN
0951-7715
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
10
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
2465-2477
UT code for WoS article
000342751000003
EID of the result in the Scopus database
—