All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Singular limit for the compressible Navier-Stokes equations with the hard sphere pressure law on expanding domains

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00567597" target="_blank" >RIV/67985840:_____/23:00567597 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00021-022-00750-y" target="_blank" >https://doi.org/10.1007/s00021-022-00750-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00021-022-00750-y" target="_blank" >10.1007/s00021-022-00750-y</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Singular limit for the compressible Navier-Stokes equations with the hard sphere pressure law on expanding domains

  • Original language description

    The article is devoted to the asymptotic limit of the compressible Navier-Stokes system with a pressure obeying a hard–sphere equation of state on a domain expanding to the whole physical space R3. Under the assumptions that acoustic waves generated in the case of ill-prepared data do not reach the boundary of the expanding domain in the given time interval and a certain relation between the Reynolds and Mach numbers and the radius of the expanding domain we prove that the target system is the incompressible Euler system on R3. We also provide an estimate of the rate of convergence expressed in terms of characteristic numbers and the radius of domains.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA22-01591S" target="_blank" >GA22-01591S: Mathematical theory and numerical analysis for equations of viscous newtonian compressible fluids</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Fluid Mechanics

  • ISSN

    1422-6928

  • e-ISSN

    1422-6952

  • Volume of the periodical

    25

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    29

  • Pages from-to

    17

  • UT code for WoS article

    000913118300001

  • EID of the result in the Scopus database

    2-s2.0-85146277850