Singular limit for the compressible Navier-Stokes equations with the hard sphere pressure law on expanding domains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00567597" target="_blank" >RIV/67985840:_____/23:00567597 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00021-022-00750-y" target="_blank" >https://doi.org/10.1007/s00021-022-00750-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-022-00750-y" target="_blank" >10.1007/s00021-022-00750-y</a>
Alternative languages
Result language
angličtina
Original language name
Singular limit for the compressible Navier-Stokes equations with the hard sphere pressure law on expanding domains
Original language description
The article is devoted to the asymptotic limit of the compressible Navier-Stokes system with a pressure obeying a hard–sphere equation of state on a domain expanding to the whole physical space R3. Under the assumptions that acoustic waves generated in the case of ill-prepared data do not reach the boundary of the expanding domain in the given time interval and a certain relation between the Reynolds and Mach numbers and the radius of the expanding domain we prove that the target system is the incompressible Euler system on R3. We also provide an estimate of the rate of convergence expressed in terms of characteristic numbers and the radius of domains.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA22-01591S" target="_blank" >GA22-01591S: Mathematical theory and numerical analysis for equations of viscous newtonian compressible fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
1422-6952
Volume of the periodical
25
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
29
Pages from-to
17
UT code for WoS article
000913118300001
EID of the result in the Scopus database
2-s2.0-85146277850