Note on the problem of motion of viscous fluid around a rotating and translating rigid body
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00540651" target="_blank" >RIV/67985840:_____/21:00540651 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21220/21:00349533
Result on the web
<a href="https://doi.org/10.14311/AP.2021.61.0005" target="_blank" >https://doi.org/10.14311/AP.2021.61.0005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/AP.2021.61.0005" target="_blank" >10.14311/AP.2021.61.0005</a>
Alternative languages
Result language
angličtina
Original language name
Note on the problem of motion of viscous fluid around a rotating and translating rigid body
Original language description
We consider the linearized and nonlinear systems describing the motion of incompressible flow around a rotating and translating rigid body D in the exterior domain Ω = R3 D, where D ⊂ R3 is open and bounded, with Lipschitz boundary. We derive the L∞-estimates for the pressure and investigate the leading term for the velocity and its gradient. Moreover, we show that the velocity essentially behaves near the infinity as a constant times the first column of the fundamental solution of the Oseen system. Finally, we consider the Oseen problem in a bounded domain ΩR:= BR ∩ Ω under certain artificial boundary conditions on the truncating boundary ∂BR, and then we compare this solution with the solution in the exterior domain Ω to get the truncation error estimate.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Polytechnica
ISSN
1210-2709
e-ISSN
1805-2363
Volume of the periodical
61
Issue of the periodical within the volume
SI
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
9
Pages from-to
5-13
UT code for WoS article
000618346400002
EID of the result in the Scopus database
2-s2.0-85101403201