Artificial boundary conditions for linearized stationary incompressible viscous flow around rotating and translating body
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00537053" target="_blank" >RIV/67985840:_____/21:00537053 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21220/21:00349492
Result on the web
<a href="https://doi.org/10.1002/mana.201900039" target="_blank" >https://doi.org/10.1002/mana.201900039</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.201900039" target="_blank" >10.1002/mana.201900039</a>
Alternative languages
Result language
angličtina
Original language name
Artificial boundary conditions for linearized stationary incompressible viscous flow around rotating and translating body
Original language description
We consider the linearized and nonlinear stationary incompressible flow around rotating and translating body in the exterior domain (Formula presented.), where (Formula presented.) is open and bounded, with Lipschitz boundary. We derive the pointwise estimates for the pressure in both cases. Moreover, we consider the linearized problem in a truncation domain (Formula presented.) of the exterior domain (Formula presented.) under certain artificial boundary conditions on the truncating boundary (Formula presented.), and then compare this solution with the solution in the exterior domain (Formula presented.) to get the truncation error estimate.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
1522-2616
Volume of the periodical
294
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
18
Pages from-to
56-73
UT code for WoS article
000580576200001
EID of the result in the Scopus database
2-s2.0-85093503931