All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Artificial boundary conditions for linearized stationary incompressible viscous flow around rotating and translating body

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00537053" target="_blank" >RIV/67985840:_____/21:00537053 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21220/21:00349492

  • Result on the web

    <a href="https://doi.org/10.1002/mana.201900039" target="_blank" >https://doi.org/10.1002/mana.201900039</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mana.201900039" target="_blank" >10.1002/mana.201900039</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Artificial boundary conditions for linearized stationary incompressible viscous flow around rotating and translating body

  • Original language description

    We consider the linearized and nonlinear stationary incompressible flow around rotating and translating body in the exterior domain (Formula presented.), where (Formula presented.) is open and bounded, with Lipschitz boundary. We derive the pointwise estimates for the pressure in both cases. Moreover, we consider the linearized problem in a truncation domain (Formula presented.) of the exterior domain (Formula presented.) under certain artificial boundary conditions on the truncating boundary (Formula presented.), and then compare this solution with the solution in the exterior domain (Formula presented.) to get the truncation error estimate.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Nachrichten

  • ISSN

    0025-584X

  • e-ISSN

    1522-2616

  • Volume of the periodical

    294

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    18

  • Pages from-to

    56-73

  • UT code for WoS article

    000580576200001

  • EID of the result in the Scopus database

    2-s2.0-85093503931