Higher integrability of solutions to generalized Stokes system under perfect slip boundary conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00434078" target="_blank" >RIV/67985840:_____/14:00434078 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/14:00229472
Result on the web
<a href="http://dx.doi.org/10.1007/s00021-014-0190-5" target="_blank" >http://dx.doi.org/10.1007/s00021-014-0190-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-014-0190-5" target="_blank" >10.1007/s00021-014-0190-5</a>
Alternative languages
Result language
angličtina
Original language name
Higher integrability of solutions to generalized Stokes system under perfect slip boundary conditions
Original language description
We prove an Lq theory result for generalized Stokes system in a C2,1 domain complemented with the perfect slip boundary conditions and under fi-growth conditions. Since the interior regularity was obtained in Diening and Kaplický (Manu Math 141:336?361,2013), a regularity up to the boundary is an aim of this paper. In order to get the main result, we use Calderón?Zygmund theory and the method developed in Caffarelli and Peral (Ann Math 130:189?213, 1989). We obtain higher integrability of the first gradient of a solution.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Mathematical and computer analysis of the evolution processes in nonlinear viscoelastic fluid-like materials</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
23
Pages from-to
823-845
UT code for WoS article
000343754800013
EID of the result in the Scopus database
—