Front propagation in nonlinear parabolic equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00434174" target="_blank" >RIV/67985840:_____/14:00434174 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1112/jlms/jdu039" target="_blank" >http://dx.doi.org/10.1112/jlms/jdu039</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/jlms/jdu039" target="_blank" >10.1112/jlms/jdu039</a>
Alternative languages
Result language
angličtina
Original language name
Front propagation in nonlinear parabolic equations
Original language description
We study existence and stability of travelling waves for nonlinear convection?diffusion equations in the one-dimensional Euclidean space. The diffusion coefficient depends on the gradient in analogy with the p -Laplacian and may be degenerate. We also prove that the solution converges to 1 outside an interface which moves with constant velocity; our results include both generation and propagation of interface properties. In particular, unconditional stability is established with respect to initial dataperturbations in L 1 (R).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the London Mathematical Society
ISSN
0024-6107
e-ISSN
—
Volume of the periodical
90
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
22
Pages from-to
551-572
UT code for WoS article
000345834700011
EID of the result in the Scopus database
—