A geometric improvement of the velocity-pressure local regularity criterion for a suitable weak solution to the Navier-Stokes equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00440826" target="_blank" >RIV/67985840:_____/14:00440826 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A geometric improvement of the velocity-pressure local regularity criterion for a suitable weak solution to the Navier-Stokes equations
Original language description
We deal with a suitable weak solution $(bold v,p)$ to the Navier-Stokes equations in a domain $Omegasubsetmathbb R^3$. We refine the criterion for the local regularity of this solution at the point $(bold fx_0,t_0)$, which uses the $L^3$-norm of $bold v$and the $L^{3/2}$-norm of $p$ in a shrinking backward parabolic neighbourhood of $(bold x_0,t_0)$. The refinement consists in the fact that only the values of $bold v$, respectively $p$, in the exterior of a space-time paraboloid with vertex at $(bold x_0,t_0)$, respectively in a "small" subset of this exterior, are considered. The consequence is that a singularity cannot appear at the point $(bold x_0,t_0)$ if $bold v$ and $p$ are "smooth" outside the paraboloid.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematica Bohemica
ISSN
0862-7959
e-ISSN
—
Volume of the periodical
139
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
14
Pages from-to
685-698
UT code for WoS article
—
EID of the result in the Scopus database
—