All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multi-Peak Solutions for Coupled Nonlinear Schrodinger Systems in Low Dimensions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148441" target="_blank" >RIV/00216305:26220/23:PU148441 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s00245-023-09974-4" target="_blank" >https://link.springer.com/article/10.1007/s00245-023-09974-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00245-023-09974-4" target="_blank" >10.1007/s00245-023-09974-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multi-Peak Solutions for Coupled Nonlinear Schrodinger Systems in Low Dimensions

  • Original language description

    In this paper, we construct the solutions to the nonlinear Schrodinger system. We construct the solution for attractive and repulsive cases. When $x_0$ is a local maximum point of the potentials P and Q and $P(x_0) = Q(x_0)$, we construct k spikes concentrating near the local maximum point $x_0$. When x_0$ is a local maximum point of P and $x^{ bar}_ 0$ is a local maximum point of Q, we construct k spikes of $ u $ concentrating at the local maximum point $ x_0$ and m spikes of v concentrating at the local maximum point $x^{ bar}_ 0$ when $x_0 not = $x^{ bar}_ 0$ This paper extends the main results established by Peng and Wang (Arch Ration Mech Anal 208:305-339, 2013) and Peng and Pi (Discrete Contin Dyn Syst 36:2205-2227, 2016), where the authors considered the case N = 3, p = 3.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    APPLIED MATHEMATICS AND OPTIMIZATION

  • ISSN

    0095-4616

  • e-ISSN

    1432-0606

  • Volume of the periodical

    88

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    56

  • Pages from-to

    1-56

  • UT code for WoS article

    000985464800001

  • EID of the result in the Scopus database

    2-s2.0-85153072313