Positive supersolutions of non-autonomous quasilinear elliptic equations with mixed reaction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU150378" target="_blank" >RIV/00216305:26220/23:PU150378 - isvavai.cz</a>
Result on the web
<a href="https://aif.centre-mersenne.org/articles/10.5802/aif.3576/" target="_blank" >https://aif.centre-mersenne.org/articles/10.5802/aif.3576/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5802/aif.3576" target="_blank" >10.5802/aif.3576</a>
Alternative languages
Result language
angličtina
Original language name
Positive supersolutions of non-autonomous quasilinear elliptic equations with mixed reaction
Original language description
We provide a simple method for obtaining new Liouville-type theorems for positive supersolutions of the We We provide a simple method for obtaining new Liouville-type theorems for positive supersolutions of the elliptic problem - Delta(p)u+ b(x)vertical bar del u vertical bar(pq/q+1) = c(x)u(q) in Omega, where Omega is an exterior domain in R-N with N >= p > 1 and q >= p - 1. In the case q not equal p - 1, we mainly deal with potentials of the type b(x) = vertical bar x vertical bar(a), c(x) = lambda vertical bar x vertical bar(sigma), where lambda > 0 and a, sigma is an element of R. We show that positive supersolutions do not exist in some ranges of the parameters p, q, a, sigma, which turn out to be optimal. When q = p - 1, we consider the above problem with general weights b(x) >= 0, c(x) > 0 and we assume that c(x)- b(p)(x)/p(p) > 0 for large vertical bar x vertical bar, but we also allow the case lim(vertical bar x vertical bar ->infinity)[c(x)- b(p)(x)/p(p)] = 0. The weights b and c are allowed to be unbounded. We prove that if this equation has a positive supersolution, then the potentials must satisfy a related differential inequality not depending on the supersolution. We also establish sufficient conditions for the nonexistence of positive supersolutions in relationship with the values of tau := lim sup(vertical bar x vertical bar ->infinity) vertical bar x vertical bar b(x) <= infinity. A key ingredient in the proofs is a generalized Hardy-type inequality associated to the p-Laplace operator.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ANNALES DE L INSTITUT FOURIER
ISSN
1777-5310
e-ISSN
—
Volume of the periodical
73
Issue of the periodical within the volume
6
Country of publishing house
FR - FRANCE
Number of pages
24
Pages from-to
2543-2566
UT code for WoS article
001109332400001
EID of the result in the Scopus database
—