All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Positive supersolutions of non-autonomous quasilinear elliptic equations with mixed reaction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU150378" target="_blank" >RIV/00216305:26220/23:PU150378 - isvavai.cz</a>

  • Result on the web

    <a href="https://aif.centre-mersenne.org/articles/10.5802/aif.3576/" target="_blank" >https://aif.centre-mersenne.org/articles/10.5802/aif.3576/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5802/aif.3576" target="_blank" >10.5802/aif.3576</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Positive supersolutions of non-autonomous quasilinear elliptic equations with mixed reaction

  • Original language description

    We provide a simple method for obtaining new Liouville-type theorems for positive supersolutions of the We We provide a simple method for obtaining new Liouville-type theorems for positive supersolutions of the elliptic problem - Delta(p)u+ b(x)vertical bar del u vertical bar(pq/q+1) = c(x)u(q) in Omega, where Omega is an exterior domain in R-N with N >= p > 1 and q >= p - 1. In the case q not equal p - 1, we mainly deal with potentials of the type b(x) = vertical bar x vertical bar(a), c(x) = lambda vertical bar x vertical bar(sigma), where lambda > 0 and a, sigma is an element of R. We show that positive supersolutions do not exist in some ranges of the parameters p, q, a, sigma, which turn out to be optimal. When q = p - 1, we consider the above problem with general weights b(x) >= 0, c(x) > 0 and we assume that c(x)- b(p)(x)/p(p) > 0 for large vertical bar x vertical bar, but we also allow the case lim(vertical bar x vertical bar ->infinity)[c(x)- b(p)(x)/p(p)] = 0. The weights b and c are allowed to be unbounded. We prove that if this equation has a positive supersolution, then the potentials must satisfy a related differential inequality not depending on the supersolution. We also establish sufficient conditions for the nonexistence of positive supersolutions in relationship with the values of tau := lim sup(vertical bar x vertical bar ->infinity) vertical bar x vertical bar b(x) <= infinity. A key ingredient in the proofs is a generalized Hardy-type inequality associated to the p-Laplace operator.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ANNALES DE L INSTITUT FOURIER

  • ISSN

    1777-5310

  • e-ISSN

  • Volume of the periodical

    73

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    24

  • Pages from-to

    2543-2566

  • UT code for WoS article

    001109332400001

  • EID of the result in the Scopus database