Cohomology theories on locally conformal symplectic manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00441464" target="_blank" >RIV/67985840:_____/15:00441464 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4310/AJM.2015.v19.n1.a3" target="_blank" >http://dx.doi.org/10.4310/AJM.2015.v19.n1.a3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4310/AJM.2015.v19.n1.a3" target="_blank" >10.4310/AJM.2015.v19.n1.a3</a>
Alternative languages
Result language
angličtina
Original language name
Cohomology theories on locally conformal symplectic manifolds
Original language description
In this note we introduce primitive cohomology groups of locally conformal symplectic manifolds (...). We study the relation between the primitive cohomology groups and the Lichnerowicz-Novikov cohomology groups of (...) , using and extending the technique of spectral sequences developed by Di Pietro and Vinogradov for symplectic manifolds. We discuss related results by many peoples, e.g. Bouche, Lychagin, Rumin, Tseng-Yau, in light of our spectral sequences. We calculate the primitive cohomology groupsof a (2n+2) -dimensional locally conformal symplectic nilmanifold as well as those of a l.c.s. solvmanifold. We show that the l.c.s. solvmanifold is a mapping torus of a contactomorphism, which is not isotopic to the identity.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Asian Journal of Mathematics
ISSN
1093-6106
e-ISSN
—
Volume of the periodical
19
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
38
Pages from-to
45-82
UT code for WoS article
000351327000003
EID of the result in the Scopus database
2-s2.0-84947057654