On approximation theorem for structured deformations from BV(Omega)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00443122" target="_blank" >RIV/67985840:_____/15:00443122 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.2140/memocs.2015.3.83" target="_blank" >http://dx.doi.org/10.2140/memocs.2015.3.83</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2140/memocs.2015.3.83" target="_blank" >10.2140/memocs.2015.3.83</a>
Alternative languages
Result language
angličtina
Original language name
On approximation theorem for structured deformations from BV(Omega)
Original language description
This note deals with structured deformations introduced by Del Piero and Owen. As treated in the present paper, a structured deformation is a pair .(g,G) where g is a macroscopic deformation giving the position of points of the body and G represents deformations without disarrangements. Here g is a map of bounded variation on the reference region, and G is a Lebesgue-integrable tensorvalued map. For structured deformations of this level of generality, an approximating sequence gk of simple deformationsis constructed from the space of maps of special bounded variation on which converges in the strongly to (g,G) and for which the sequence of total variations of gk is bounded. The condition is optimal. Further, in the second part of this note, the limitrelation of Del Piero and Owen is established on the above level of generality.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0473" target="_blank" >GA201/09/0473: Methods of function theory and Banach algebras in operator theory IV</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics and Mechanics of Complex Systems
ISSN
2326-7186
e-ISSN
—
Volume of the periodical
3
Issue of the periodical within the volume
1
Country of publishing house
IT - ITALY
Number of pages
18
Pages from-to
83-100
UT code for WoS article
—
EID of the result in the Scopus database
—