All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A note on sublinear separators and expansion

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437036" target="_blank" >RIV/00216208:11320/21:10437036 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=avrLyTNO5R" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=avrLyTNO5R</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejc.2020.103273" target="_blank" >10.1016/j.ejc.2020.103273</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A note on sublinear separators and expansion

  • Original language description

    For a hereditary class g of graphs, let s(g)(n) be the minimum function such that each n-vertex graph in g has a balanced separator of order at most s(g)(n), and let del(g)(r) be the minimum function bounding the expansion of g, in the sense of bounded expansion theory of Nesetril and Ossona de Mendez. The results of Plotkin et al. (1994) and Esperet and Raymond (2018) imply that if s(g)(n) = Theta(n(1-epsilon)) for some epsilon &gt; 0, then del(g)(r) = Omega(r(1/2 epsilon-1)/polylog r) and del(g)(r) = 0(r(1/epsilon-1) polylog r). Answering a question of Esperet and Raymond, we show that neither of the exponents can be substantially improved. (C) 2020 Elsevier Ltd. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Journal of Combinatorics

  • ISSN

    0195-6698

  • e-ISSN

  • Volume of the periodical

    93

  • Issue of the periodical within the volume

    march 2021

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    7

  • Pages from-to

    103273

  • UT code for WoS article

    000607517300012

  • EID of the result in the Scopus database