A note on sublinear separators and expansion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437036" target="_blank" >RIV/00216208:11320/21:10437036 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=avrLyTNO5R" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=avrLyTNO5R</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2020.103273" target="_blank" >10.1016/j.ejc.2020.103273</a>
Alternative languages
Result language
angličtina
Original language name
A note on sublinear separators and expansion
Original language description
For a hereditary class g of graphs, let s(g)(n) be the minimum function such that each n-vertex graph in g has a balanced separator of order at most s(g)(n), and let del(g)(r) be the minimum function bounding the expansion of g, in the sense of bounded expansion theory of Nesetril and Ossona de Mendez. The results of Plotkin et al. (1994) and Esperet and Raymond (2018) imply that if s(g)(n) = Theta(n(1-epsilon)) for some epsilon > 0, then del(g)(r) = Omega(r(1/2 epsilon-1)/polylog r) and del(g)(r) = 0(r(1/epsilon-1) polylog r). Answering a question of Esperet and Raymond, we show that neither of the exponents can be substantially improved. (C) 2020 Elsevier Ltd. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Volume of the periodical
93
Issue of the periodical within the volume
march 2021
Country of publishing house
GB - UNITED KINGDOM
Number of pages
7
Pages from-to
103273
UT code for WoS article
000607517300012
EID of the result in the Scopus database
—