Small graph classes and bounded expansion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10033299" target="_blank" >RIV/00216208:11320/10:10033299 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Small graph classes and bounded expansion
Original language description
A class of simple undirected graphs is small if it contains at most n!alfa^n labeled graphs with n vertices, for some constant alfa. We prove that for any constants c,epsilon}0, the class of graphs with expansion bounded by the function f(r)=c^r^(1/3?epsilon) is small. Also, we show that there exists a constant c such that the class of graphs with expansion bounded by c^r^(1/2) is not small.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Theory. Series B
ISSN
0095-8956
e-ISSN
—
Volume of the periodical
100
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
5
Pages from-to
—
UT code for WoS article
000275441000008
EID of the result in the Scopus database
—