Eigenvalue asymptotics for the schrodinger operator with a delta-interaction on a punctured surface.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F03%3A49033236" target="_blank" >RIV/61389005:_____/03:49033236 - isvavai.cz</a>
Alternative codes found
RIV/61389005:_____/04:00101857
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Eigenvalue asymptotics for the schrodinger operator with a delta-interaction on a punctured surface.
Original language description
Given ngreater than or equal to2, we put r = min{i is an element of N; i > n/2}. Let Sigma be a compact, C-r-smooth surface in R-n which contains the origin. Let further {S-epsilon}(0less than or equal toepsilon<η) be a family of measurable subsets of &USigma; such that sup(x&ISIN;Sε) x = O(ε) as ε --> 0. We derive an asymptotic expansion for the discrete spectrum of the Schrodinger operator - Delta - betadelta(.-SigmaS-epsilon) in L-2(R-n), where beta is a positive constant,as epsilon --> 0. An analogous result is given also for geometrically induced bound states due to a delta interaction supported by an infinite planar curve.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2004
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Letters in Mathematical Physics
ISSN
0377-9017
e-ISSN
—
Volume of the periodical
65
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
8
Pages from-to
19-26
UT code for WoS article
—
EID of the result in the Scopus database
—