All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Disconnected rational homotopy theory

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00446407" target="_blank" >RIV/67985840:_____/15:00446407 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/15:10335188

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.aim.2015.07.009" target="_blank" >http://dx.doi.org/10.1016/j.aim.2015.07.009</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aim.2015.07.009" target="_blank" >10.1016/j.aim.2015.07.009</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Disconnected rational homotopy theory

  • Original language description

    We construct two algebraic versions of homotopy theory of rational disconnected topological spaces, one based on differential graded commutative associative algebras and the other one on complete differential graded Lie algebras. As an application of thedeveloped technology we obtain results on the structure of Maurer-Cartan spaces of complete differential graded Lie algebras.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Mathematics

  • ISSN

    0001-8708

  • e-ISSN

  • Volume of the periodical

    283

  • Issue of the periodical within the volume

    1 October

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    59

  • Pages from-to

    303-361

  • UT code for WoS article

    000361016700011

  • EID of the result in the Scopus database

    2-s2.0-84938365918