The simplest cohomological invariants for vertex algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00543309" target="_blank" >RIV/67985840:_____/21:00543309 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.geomphys.2021.104306" target="_blank" >https://doi.org/10.1016/j.geomphys.2021.104306</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.geomphys.2021.104306" target="_blank" >10.1016/j.geomphys.2021.104306</a>
Alternative languages
Result language
angličtina
Original language name
The simplest cohomological invariants for vertex algebras
Original language description
For the double complex structure of grading-restricted vertex algebra cohomology defined in cite{Huang}, we introduce a multiplication of elements of double complex spaces. We show that the orthogonality and bi-grading conditions applied on double complex spaces, provide in relation among mappings and actions of co-boundary operators. Thus, we endow the double complex spaces with structure of bi-graded differential algebra. We then introduce the simples cohomology classes for a grading-restricted vertex algebra, and show their independence on the choice of mappings from double complex spaces. We prove that its cohomology class does not depend on mappings representing of the double complex spaces. Finally, we show that the orthogonality relations together with the bi-grading condition bring about generators and commutation relations for a continual Lie algebra.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Geometry and Physics
ISSN
0393-0440
e-ISSN
1879-1662
Volume of the periodical
168
Issue of the periodical within the volume
October
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
17
Pages from-to
104306
UT code for WoS article
000687953900005
EID of the result in the Scopus database
2-s2.0-85108001297