All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Product-type classes for vertex algebra cohomology of foliations on complex curves

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00575121" target="_blank" >RIV/67985840:_____/23:00575121 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00220-023-04751-4" target="_blank" >https://doi.org/10.1007/s00220-023-04751-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00220-023-04751-4" target="_blank" >10.1007/s00220-023-04751-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Product-type classes for vertex algebra cohomology of foliations on complex curves

  • Original language description

    We introduce the vertex algebra cohomology of foliations on complex curves. Generalizing the classical case, the orthogonality condition with respect to a product of elements of the double complexes associated to a grading-restricted vertex algebra matrix elements leads to the construction of cohomology invariants of codimension one foliations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communications in Mathematical Physics

  • ISSN

    0010-3616

  • e-ISSN

    1432-0916

  • Volume of the periodical

    402

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    59

  • Pages from-to

    1453-1511

  • UT code for WoS article

    000992043200001

  • EID of the result in the Scopus database

    2-s2.0-85160252739