All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Characterization of codimension one foliations on complex curves by connections

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00556026" target="_blank" >RIV/67985840:_____/22:00556026 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1142/S0129055X22300023" target="_blank" >https://doi.org/10.1142/S0129055X22300023</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0129055X22300023" target="_blank" >10.1142/S0129055X22300023</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Characterization of codimension one foliations on complex curves by connections

  • Original language description

    A way to characterize the space of leaves of a foliation in terms of connections is proposed. A particular example of vertex algebra cohomology of codimension one foliations on complex curves is considered. Mupltiple applications in Mathematical physics are revealed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Reviews in Mathematical Physics

  • ISSN

    0129-055X

  • e-ISSN

    1793-6659

  • Volume of the periodical

    34

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    SG - SINGAPORE

  • Number of pages

    50

  • Pages from-to

    2230002

  • UT code for WoS article

    000771633100002

  • EID of the result in the Scopus database

    2-s2.0-85119483815