Characterization of codimension one foliations on complex curves by connections
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00556026" target="_blank" >RIV/67985840:_____/22:00556026 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1142/S0129055X22300023" target="_blank" >https://doi.org/10.1142/S0129055X22300023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0129055X22300023" target="_blank" >10.1142/S0129055X22300023</a>
Alternative languages
Result language
angličtina
Original language name
Characterization of codimension one foliations on complex curves by connections
Original language description
A way to characterize the space of leaves of a foliation in terms of connections is proposed. A particular example of vertex algebra cohomology of codimension one foliations on complex curves is considered. Mupltiple applications in Mathematical physics are revealed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Reviews in Mathematical Physics
ISSN
0129-055X
e-ISSN
1793-6659
Volume of the periodical
34
Issue of the periodical within the volume
3
Country of publishing house
SG - SINGAPORE
Number of pages
50
Pages from-to
2230002
UT code for WoS article
000771633100002
EID of the result in the Scopus database
2-s2.0-85119483815