All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Chaos in Cartan foliations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017300" target="_blank" >RIV/62690094:18470/20:50017300 - isvavai.cz</a>

  • Result on the web

    <a href="https://aip.scitation.org/doi/10.1063/5.0021596" target="_blank" >https://aip.scitation.org/doi/10.1063/5.0021596</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0021596" target="_blank" >10.1063/5.0021596</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Chaos in Cartan foliations

  • Original language description

    Chaotic foliations generalize Devaney&apos;s concept of chaos for dynamical systems. The property of a foliation to be chaotic is transversal, i.e, depends on the structure of the leaf space of the foliation. The transversal structure of a Cartan foliation is modeled on a Cartan manifold. The problem of investigating chaotic Cartan foliations is reduced to the corresponding problem for their holonomy pseudogroups of local automorphisms of transversal Cartan manifolds. For a Cartan foliation of a wide class, this problem is reduced to the corresponding problem for its global holonomy group, which is a countable discrete subgroup of the Lie automorphism group of an associated simply connected Cartan manifold. Several types of Cartan foliations that cannot be chaotic are indicated. Examples of chaotic Cartan foliations are constructed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    CHAOS

  • ISSN

    1054-1500

  • e-ISSN

  • Volume of the periodical

    30

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    "Article Number: 103116"

  • UT code for WoS article

    000585760600003

  • EID of the result in the Scopus database

    2-s2.0-85094572176