LOSIK CLASSES FOR CODIMENSION-ONE FOLIATIONS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019315" target="_blank" >RIV/62690094:18470/22:50019315 - isvavai.cz</a>
Result on the web
<a href="https://www.cambridge.org/core/journals/journal-of-the-institute-of-mathematics-of-jussieu/article/abs/losik-classes-for-codimensionone-foliations/5013B99C49A88A7CC38EBFF67D7ABE1E" target="_blank" >https://www.cambridge.org/core/journals/journal-of-the-institute-of-mathematics-of-jussieu/article/abs/losik-classes-for-codimensionone-foliations/5013B99C49A88A7CC38EBFF67D7ABE1E</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S1474748020000596" target="_blank" >10.1017/S1474748020000596</a>
Alternative languages
Result language
angličtina
Original language name
LOSIK CLASSES FOR CODIMENSION-ONE FOLIATIONS
Original language description
Following Losik's approach to Gelfand's formal geometry, certain characteristic classes for codimension-one foliations coming from the Gelfand-Fuchs cohomology are considered. Sufficient conditions for nontriviality in terms of dynamical properties of generators of the holonomy groups are found. The nontriviality for the Reeb foliations is shown; this is in contrast with some classical theorems on the Godbillon-Vey class; for example, the Mizutani-Morita-Tsuboi theorem about triviality of the Godbillon-Vey class of foliations almost without holonomy is not true for the classes under consideration. It is shown that the considered classes are trivial for a large class of foliations without holonomy. The question of triviality is related to ergodic theory of dynamical systems on the circle and to the problem of smooth conjugacy of local diffeomorphisms. Certain classes are obstructions for the existence of transverse affine and projective connections.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU
ISSN
1474-7480
e-ISSN
1475-3030
Volume of the periodical
21
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
29
Pages from-to
1391-1419
UT code for WoS article
000776435900001
EID of the result in the Scopus database
2-s2.0-85099144485