Non-diffeomorphic Reeb foliations and modified Godbillon-Vey class
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50018969" target="_blank" >RIV/62690094:18470/22:50018969 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007%2Fs00209-021-02828-1" target="_blank" >https://link.springer.com/article/10.1007%2Fs00209-021-02828-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00209-021-02828-1" target="_blank" >10.1007/s00209-021-02828-1</a>
Alternative languages
Result language
angličtina
Original language name
Non-diffeomorphic Reeb foliations and modified Godbillon-Vey class
Original language description
The paper deals with a modified Godbillon-Vey class defined by Losik for codimension-one foliations. This characteristic class takes values in the cohomology of the second order frame bundle over the leaf space of the foliation. The definition of the Reeb foliation depends upon two real functions satisfying certain conditions. All these foliations are pairwise homeomorphic and have trivial Godbillon-Vey class. We show that the modified Godbillon-Vey is non-trivial for some Reeb foliations and it is trivial for some other Reeb foliations. In particular, the modified Godbillon-Vey class can distinguish non-diffeomorphic foliations and it provides more information than the classical Godbillon-Vey class. We also show that this class is non-trivial for some foliations on the two-dimensional surfaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Zeitschrift
ISSN
0025-5874
e-ISSN
1432-1823
Volume of the periodical
300
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
15
Pages from-to
1335-1349
UT code for WoS article
000682499500001
EID of the result in the Scopus database
2-s2.0-85112651818