All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Non-diffeomorphic Reeb foliations and modified Godbillon-Vey class

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50018969" target="_blank" >RIV/62690094:18470/22:50018969 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007%2Fs00209-021-02828-1" target="_blank" >https://link.springer.com/article/10.1007%2Fs00209-021-02828-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00209-021-02828-1" target="_blank" >10.1007/s00209-021-02828-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Non-diffeomorphic Reeb foliations and modified Godbillon-Vey class

  • Original language description

    The paper deals with a modified Godbillon-Vey class defined by Losik for codimension-one foliations. This characteristic class takes values in the cohomology of the second order frame bundle over the leaf space of the foliation. The definition of the Reeb foliation depends upon two real functions satisfying certain conditions. All these foliations are pairwise homeomorphic and have trivial Godbillon-Vey class. We show that the modified Godbillon-Vey is non-trivial for some Reeb foliations and it is trivial for some other Reeb foliations. In particular, the modified Godbillon-Vey class can distinguish non-diffeomorphic foliations and it provides more information than the classical Godbillon-Vey class. We also show that this class is non-trivial for some foliations on the two-dimensional surfaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Zeitschrift

  • ISSN

    0025-5874

  • e-ISSN

    1432-1823

  • Volume of the periodical

    300

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    15

  • Pages from-to

    1335-1349

  • UT code for WoS article

    000682499500001

  • EID of the result in the Scopus database

    2-s2.0-85112651818