Godbillon-Vey invariants of Non-Lorentzian spacetimes and Aristotelian hydrodynamics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475414" target="_blank" >RIV/00216208:11320/23:10475414 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=EiLJ_zbM.z" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=EiLJ_zbM.z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8121/acfc07" target="_blank" >10.1088/1751-8121/acfc07</a>
Alternative languages
Result language
angličtina
Original language name
Godbillon-Vey invariants of Non-Lorentzian spacetimes and Aristotelian hydrodynamics
Original language description
We study the geometry of foliated non-Lorentzian spacetimes in terms of the Godbillon-Vey class of the foliation. We relate the intrinsic torsion of a foliated Aristotelian manifold to its Godbillon-Vey class, and interpret it as a measure of the local spin of the spatial leaves in the time direction. With this characterisation, the Godbillon-Vey class is an obstruction to integrability of the G -structure defining the Aristotelian spacetime. We use these notions to formulate a new geometric approach to hydrodynamics of fluid flows by endowing them with Aristotelian structures. We establish conditions under which the Godbillon-Vey class represents an obstruction to steady flow of the fluid and prove new conservation laws.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
<a href="/en/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopy and Homology Methods and Tools Related to Mathematical Physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
1751-8121
Volume of the periodical
56
Issue of the periodical within the volume
45
Country of publishing house
GB - UNITED KINGDOM
Number of pages
45
Pages from-to
455201
UT code for WoS article
001083388000001
EID of the result in the Scopus database
2-s2.0-85175621054