All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Godbillon-Vey invariants of Non-Lorentzian spacetimes and Aristotelian hydrodynamics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475414" target="_blank" >RIV/00216208:11320/23:10475414 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=EiLJ_zbM.z" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=EiLJ_zbM.z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1751-8121/acfc07" target="_blank" >10.1088/1751-8121/acfc07</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Godbillon-Vey invariants of Non-Lorentzian spacetimes and Aristotelian hydrodynamics

  • Original language description

    We study the geometry of foliated non-Lorentzian spacetimes in terms of the Godbillon-Vey class of the foliation. We relate the intrinsic torsion of a foliated Aristotelian manifold to its Godbillon-Vey class, and interpret it as a measure of the local spin of the spatial leaves in the time direction. With this characterisation, the Godbillon-Vey class is an obstruction to integrability of the G -structure defining the Aristotelian spacetime. We use these notions to formulate a new geometric approach to hydrodynamics of fluid flows by endowing them with Aristotelian structures. We establish conditions under which the Godbillon-Vey class represents an obstruction to steady flow of the fluid and prove new conservation laws.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10300 - Physical sciences

Result continuities

  • Project

    <a href="/en/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopy and Homology Methods and Tools Related to Mathematical Physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Physics A: Mathematical and Theoretical

  • ISSN

    1751-8113

  • e-ISSN

    1751-8121

  • Volume of the periodical

    56

  • Issue of the periodical within the volume

    45

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    45

  • Pages from-to

    455201

  • UT code for WoS article

    001083388000001

  • EID of the result in the Scopus database

    2-s2.0-85175621054