All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Reductive cohomology associated with vertex algebras

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00580557" target="_blank" >RIV/67985840:_____/23:00580557 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1088/1742-6596/2667/1/012042" target="_blank" >http://dx.doi.org/10.1088/1742-6596/2667/1/012042</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1742-6596/2667/1/012042" target="_blank" >10.1088/1742-6596/2667/1/012042</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Reductive cohomology associated with vertex algebras

  • Original language description

    We review the notion of the reduction cohomology of vertex algebras. The algebraic conditions leading to the chain property for complexes of vertex operator algebra n-point functions (with their convergence assumed) with a coboundary operator defined through reduction formulas are studied. Algebraic, geometrical, and cohomological meanings of reduction formulas and chain condition are clarified. The reduction cohomology for vertex operator algebras associated to Jacobi forms is computed. A counterpart of the Bott-Segal theorem for Riemann surfaces in terms of the reductions cohomology is proven.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Journal of Physics: Conference series

  • ISBN

  • ISSN

    1742-6588

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    012042

  • Publisher name

    IOP

  • Place of publication

    Bristol

  • Event location

    Praha

  • Event date

    Jul 24, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article