On the energy inequality for weak solutions to the Navier-Stokes equations of compressible fluids on unbounded domains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00447222" target="_blank" >RIV/67985840:_____/15:00447222 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.na.2015.07.031" target="_blank" >http://dx.doi.org/10.1016/j.na.2015.07.031</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.na.2015.07.031" target="_blank" >10.1016/j.na.2015.07.031</a>
Alternative languages
Result language
angličtina
Original language name
On the energy inequality for weak solutions to the Navier-Stokes equations of compressible fluids on unbounded domains
Original language description
We consider the Navier?Stokes equations of compressible isentropic viscous fluids on an unbounded three-dimensional domain with a compact Lipschitz boundary. Under the condition that the total mass of the fluid is finite, we show the existence of globally defined weak solutions satisfying the energy inequality in differential form.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis: Theory, Methods & Applications
ISSN
0362-546X
e-ISSN
—
Volume of the periodical
128
Issue of the periodical within the volume
November
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
136-148
UT code for WoS article
000361827300010
EID of the result in the Scopus database
2-s2.0-84940377454