All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Robustness of one-dimensional viscous fluid motion under multidimensional perturbations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00448122" target="_blank" >RIV/67985840:_____/15:00448122 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jde.2015.08.029" target="_blank" >http://dx.doi.org/10.1016/j.jde.2015.08.029</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jde.2015.08.029" target="_blank" >10.1016/j.jde.2015.08.029</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Robustness of one-dimensional viscous fluid motion under multidimensional perturbations

  • Original language description

    We adapt the relative energy functional associated to the compressible Navier-Stokes system to show stability of solutions emanating from 1-D initial data with respect to multidimensional N = 2, 3 perturbations. Besides the application of the relative energy inequality as a suitable ?distance between two solutions, refined regularity estimates in Lp based Sobolev spaces are used.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Differential Equations

  • ISSN

    0022-0396

  • e-ISSN

  • Volume of the periodical

    259

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    7529-7539

  • UT code for WoS article

    000363072800019

  • EID of the result in the Scopus database

    2-s2.0-84943359800