All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Correlation in hard distributions in communication complexity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00448831" target="_blank" >RIV/67985840:_____/15:00448831 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.544" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.544</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.544" target="_blank" >10.4230/LIPIcs.APPROX-RANDOM.2015.544</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Correlation in hard distributions in communication complexity

  • Original language description

    We study the effect that the amount of correlation in a bipartite distribution has on the communication complexity of a problem under that distribution. We introduce a new family of complexity measures that interpolates between the two previously studiedextreme cases: the (standard) randomised communication complexity and the case of distributional complexity under product distributions. We give a tight characterisation of the randomised complexity of Disjointness under distributions with mutual information k, showing that it is Theta(sqrt(n(k+1))) for all 0 <= k <= n. This smoothly interpolates between the lower bounds of Babai, Frankl and Simon for the product distribution case (k=0), and the bound of Razborov for the randomised case. The upper bounds improve and generalise what was known for product distributions, and imply that any tight bound for Disjointness needs Omega(n) bits of mutual information in the corresponding distribution.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)

  • ISBN

    978-3-939897-89-7

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    28

  • Pages from-to

    544-572

  • Publisher name

    Schloss Dagstuhl, Leibniz-Zentrum für Informatik

  • Place of publication

    Dagstuhl

  • Event location

    Princeton

  • Event date

    Aug 24, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article