All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Generalizations of the distributed Deutsch-Jozsa promise problem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00095802" target="_blank" >RIV/00216224:14330/17:00095802 - isvavai.cz</a>

  • Result on the web

    <a href="http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9690749&fileId=S0960129515000158" target="_blank" >http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9690749&fileId=S0960129515000158</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S0960129515000158" target="_blank" >10.1017/S0960129515000158</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Generalizations of the distributed Deutsch-Jozsa promise problem

  • Original language description

    In the distributed Deutsch–Jozsa promise problem, two parties are to determine whether their respective strings x, y in {0,1} n are at the Hamming distance H(x, y) = 0 or H(x, y) = $frac{n}{2}$. Buhrman et al. (STOC' 98) proved that the exact quantum communication complexity of this problem is O(log n) while the deterministic communication complexity is Omega(n). This was the first impressive (exponential) gap between quantum and classical communication complexity. In this paper, we generalize the above distributed Deutsch-Jozsa promise problem to determine, for any fixed $frac{n}{2}$ &lt;= k &lt;= n, whether H(x, y) = 0 or H(x, y) = k, and show that an exponential gap between exact quantum and deterministic communication complexity still holds if k is an even such that $frac{1}{2}$n &lt;= k &lt; (1 - lambda)n, where 0 &lt; lambda &lt; $frac{1}{2}$ is given. We also deal with a promise version of the well-known disjointness problem and show also that for this promise problem there exists an exponential gap between quantum (and also probabilistic) communication complexity and deterministic communication complexity of the promise version of such a disjointness problem. Finally, some applications to quantum, probabilistic and deterministic finite automata of the results obtained are demonstrated.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EE2.3.30.0009" target="_blank" >EE2.3.30.0009: Employment of Newly Graduated Doctors of Science for Scientific Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Structures in Computer Science

  • ISSN

    0960-1295

  • e-ISSN

  • Volume of the periodical

    27

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    21

  • Pages from-to

    311-331

  • UT code for WoS article

    000395533500001

  • EID of the result in the Scopus database

    2-s2.0-84929008498