All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A magnetic version of the Smilansky-Solomyak model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F17%3AA1801QYF" target="_blank" >RIV/61988987:17310/17:A1801QYF - isvavai.cz</a>

  • Alternative codes found

    RIV/61389005:_____/17:00482519 RIV/68407700:21340/17:00319048

  • Result on the web

    <a href="http://dx.doi.org/10.1088/1751-8121/aa9234" target="_blank" >http://dx.doi.org/10.1088/1751-8121/aa9234</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1751-8121/aa9234" target="_blank" >10.1088/1751-8121/aa9234</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A magnetic version of the Smilansky-Solomyak model

  • Original language description

    We analyze spectral properties of two mutually related families ofmagnetic Schr"{o}dinger operators, $H_{mathrm{Sm}}(A)=(i nabla+A)^2+omega^2 y^2+lambda y delta(x)$ and $H(A)=(i nabla+A)^2+omega^2 y^2+ lambda y^2 V(x y)$ in $L^2(R^2)$, with theparameters $omega>0$ and $lambda&lt;0$, where $A$ is a vectorpotential corresponding to a homogeneous magnetic fieldperpendicular to the plane and $V$ is a regular nonnegative andcompactly supported potential. We show that the spectral propertiesof the operators depend crucially on the one-dimensionalSchr"{o}dinger operators $L= -frac{mathrm{d}^2}{mathrm{d}x^2}+omega^2 +lambda delta (x)$ and $L (V)= -frac{mathrm{d}^2}{mathrm{d}x^2} +omega^2 +lambda V(x)$,respectively. Depending on whether the operators $L$ and $L(V)$ arepositive or not, the spectrum of $H_{mathrm{Sm}}(A)$ and $H(V)$exhibits a sharp transition.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-01706S" target="_blank" >GA17-01706S: Mathematical-Physics Models of Novel Materials</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    J PHYS A-MATH THEOR

  • ISSN

    1751-8113

  • e-ISSN

    1751-8121

  • Volume of the periodical

    50

  • Issue of the periodical within the volume

    48

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    25

  • Pages from-to

  • UT code for WoS article

    000415012500001

  • EID of the result in the Scopus database

    2-s2.0-85034220785