All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A REGULAR ANALOGUE OF THE SMILANSKY MODEL: SPECTRAL PROPERTIES

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F17%3AA1801NVZ" target="_blank" >RIV/61988987:17310/17:A1801NVZ - isvavai.cz</a>

  • Alternative codes found

    RIV/61389005:_____/17:00484251 RIV/68407700:21340/17:00319056

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    A REGULAR ANALOGUE OF THE SMILANSKY MODEL: SPECTRAL PROPERTIES

  • Original language description

    We analyze spectral properties of the operator $H=frac{partial^2}{partial x^2} -frac{partial^2}{partial y^2} +omega^2y^2-lambda y^2V(x y)$ in $L^2(mathbb{R}^2)$, where $omegane 0$ and $Vge 0$ is a compactly supported and sufficiently regular potential. It is known that the spectrum of $H$ depends on the one-dimensional Schr"odinger operator $L=-frac{mathrm{d}^2}{mathrm{d}x^2}+omega^2-lambdaV(x)$ and it changes substantially as $infsigma(L)$ switches sign. We prove that in the critical case, $infsigma(L)=0$, the spectrum of $H$ is purely essential and covers the interval $[0,infty)$. In the subcritical case, $infsigma(L)>0$, the essential spectrum starts from $omega$ and there is a non-void discrete spectrum in the interval $[0,omega)$. We also derive a bound on the corresponding eigenvalue moments.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-01706S" target="_blank" >GA17-01706S: Mathematical-Physics Models of Novel Materials</a><br>

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    REP MATH PHYS

  • ISSN

    0034-4877

  • e-ISSN

  • Volume of the periodical

    80

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    PL - POLAND

  • Number of pages

    16

  • Pages from-to

    177-192

  • UT code for WoS article

    000416194600004

  • EID of the result in the Scopus database