On a class of Schroedinger operators exhibiting spectral transition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F17%3AA1801IZV" target="_blank" >RIV/61988987:17310/17:A1801IZV - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4171/175-1/3" target="_blank" >http://dx.doi.org/10.4171/175-1/3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/175-1/3" target="_blank" >10.4171/175-1/3</a>
Alternative languages
Result language
angličtina
Original language name
On a class of Schroedinger operators exhibiting spectral transition
Original language description
We analyze two-dimensional Schroedinger operators -Delta-lambda (x^2 + y^2), lambdage0 on a region with four hyperbolic "horns", D={(x, y)in mathbb{R}^2:|x y|<l} with the Dirichlet boundary conditions on partial D. We study the spectrum for different regimes of coupling constant lambda.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-02476S" target="_blank" >GA14-02476S: Variations, geometry and physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Functional Analysis and Operator Theory for Quantum Physics: The Pavel Exner Anniversary Volume
ISBN
978-3-03719-175-0
Number of pages of the result
15
Pages from-to
55-69
Number of pages of the book
597
Publisher name
European Mathematical Society Publishing House
Place of publication
Švýcarská konfederace
UT code for WoS chapter
—