A note on tension spline
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00450756" target="_blank" >RIV/67985840:_____/15:00450756 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A note on tension spline
Original language description
Spline theory is mainly grounded on two approaches: the algebraic one (where splines are understood as piecewise smooth functions) and the variational one (where splines are obtained via minimization of quadratic functionals with constraints). We show that the general variational approach called smooth interpolation introduced by Talmi and Gilat covers not only the cubic spline but also the well known tension spline (called also spline in tension or spline with tension). We present the results of a 1D numerical example that show the advantages and drawbacks of the tension spline.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-02067S" target="_blank" >GA14-02067S: Advanced methods for flow-field analysis</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Applications of Mathematics 2015
ISBN
978-80-85823-65-3
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
217-224
Publisher name
Institute of Mathematics CAS
Place of publication
Prague
Event location
Prague
Event date
Nov 18, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—