A particular smooth interpolation that generates splines
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00475635" target="_blank" >RIV/67985840:_____/17:00475635 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.21136/panm.2016.14" target="_blank" >http://dx.doi.org/10.21136/panm.2016.14</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/panm.2016.14" target="_blank" >10.21136/panm.2016.14</a>
Alternative languages
Result language
angličtina
Original language name
A particular smooth interpolation that generates splines
Original language description
There are two grounds the spline theory stems from -- the algebraic one (where splines are understood as piecewise smooth functions satisfying some continuity conditions) and the variational one (where splines are obtained via minimization of some quadratic functionals with constraints). We use the general variational approach called $it smooth interpolation$ introduced by Talmi and Gilat and show that it covers not only the cubic spline and its 2D and 3D analogues but also the well known tension spline (called also spline with tension). We present the results of a 1D numerical example that characterize some properties of the tension spline.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA14-02067S" target="_blank" >GA14-02067S: Advanced methods for flow-field analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Programs and algorithms of numerical mathematics 18
ISBN
978-80-85823-67-7
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
112-119
Publisher name
Institute of Mathematics CAS
Place of publication
Prague
Event location
Janov nad Nisou
Event date
Jun 19, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000467646600014