Face-to-face partition of 3D space with identical well-centered tetrahedra
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00452193" target="_blank" >RIV/67985840:_____/15:00452193 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10492-015-0115-5" target="_blank" >http://dx.doi.org/10.1007/s10492-015-0115-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10492-015-0115-5" target="_blank" >10.1007/s10492-015-0115-5</a>
Alternative languages
Result language
angličtina
Original language name
Face-to-face partition of 3D space with identical well-centered tetrahedra
Original language description
The motivation for this paper comes from physical problems defined on bounded smooth domains $Omega $ in 3D. Numerical schemes for these problems are usually defined on some polyhedral domains $Omega _h$ and if there is some additional compactness result available, then the method may converge even if $Omega _h to Omega $ only in the sense of compacts. Hence, we use the idea of meshing the whole space and defining the approximative domains as a subset of this partition. endgraf Numerical schemes for which quantities are defined on dual partitions usually require some additional quality. One of the used approaches is the concept of emph {well-centeredness}, in which the center of the circumsphere of any element lies inside that element. We show that the one-parameter family of Sommerville tetrahedral elements, whose copies and mirror images tile 3D, build a well-centered face-to-face mesh. Then, a shape-optimal value of the parameter is computed.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applications of Mathematics
ISSN
0862-7940
e-ISSN
—
Volume of the periodical
60
Issue of the periodical within the volume
6
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
15
Pages from-to
637-651
UT code for WoS article
000367089900003
EID of the result in the Scopus database
2-s2.0-84950308302