All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cobham recursive set functions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00456152" target="_blank" >RIV/67985840:_____/16:00456152 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.apal.2015.12.005" target="_blank" >http://dx.doi.org/10.1016/j.apal.2015.12.005</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apal.2015.12.005" target="_blank" >10.1016/j.apal.2015.12.005</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cobham recursive set functions

  • Original language description

    This paper introduces the Cobham Recursive Set Functions (CRSF) as a version of polynomial time computable functions on general sets, based on a limited (bounded) form of ∈-recursion. This is inspired by Cobham's classic definition of polynomial time functions based on limited recursion on notation. We introduce a new set composition function, and a new smash function for sets which allows polynomial increases in the ranks and in the cardinalities of transitive closures. We bootstrap CRSF, prove closure under (unbounded) replacement, and prove that any CRSF function is embeddable into a smash term. When restricted to natural encodings of binary strings as hereditarily finite sets, the CRSF functions define precisely the polynomial time computable functions on binary strings. Prior work of Beckmann, Buss and Friedman and of Arai introduced set functions based on safe-normal recursion in the sense of Bellantoni-Cook.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annals of Pure and Applied Logic

  • ISSN

    0168-0072

  • e-ISSN

  • Volume of the periodical

    167

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    35

  • Pages from-to

    335-369

  • UT code for WoS article

    000368208900008

  • EID of the result in the Scopus database

    2-s2.0-84953293508