All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

In some symmetric spaces monotonicity properties can be reduced to the cone of rearrangements

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00457964" target="_blank" >RIV/67985840:_____/16:00457964 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00010-015-0379-6" target="_blank" >http://dx.doi.org/10.1007/s00010-015-0379-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00010-015-0379-6" target="_blank" >10.1007/s00010-015-0379-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    In some symmetric spaces monotonicity properties can be reduced to the cone of rearrangements

  • Original language description

    Geometric properties being the rearrangement counterparts of strict monotonicity, lower local uniform monotonicity and upper local uniform monotonicity in some symmetric spaces are considered. The relationships between strict monotonicity, upper local uniform monotonicity restricted to rearrangements and classical monotonicity properties (sometimes under some additional assumptions) are showed. It is proved that order continuity and lower uniform monotonicity properties for rearrangements of symmetric spaces together are equivalent to the classical lower local uniform monotonicity for any symmetric space over a sigma-finite complete and non-atomic measure space. It is also showed that in the case of order continuous symmetric spaces over a σ sigma-finite and complete measure space, upper local uniform monotonicity and its rearrangement counterpart shortly called ULUM* coincide.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Aequationes Mathematicae

  • ISSN

    0001-9054

  • e-ISSN

  • Volume of the periodical

    90

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CA - CANADA

  • Number of pages

    13

  • Pages from-to

    249-261

  • UT code for WoS article

    000371829100023

  • EID of the result in the Scopus database

    2-s2.0-84960433774