In some symmetric spaces monotonicity properties can be reduced to the cone of rearrangements
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00457964" target="_blank" >RIV/67985840:_____/16:00457964 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00010-015-0379-6" target="_blank" >http://dx.doi.org/10.1007/s00010-015-0379-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00010-015-0379-6" target="_blank" >10.1007/s00010-015-0379-6</a>
Alternative languages
Result language
angličtina
Original language name
In some symmetric spaces monotonicity properties can be reduced to the cone of rearrangements
Original language description
Geometric properties being the rearrangement counterparts of strict monotonicity, lower local uniform monotonicity and upper local uniform monotonicity in some symmetric spaces are considered. The relationships between strict monotonicity, upper local uniform monotonicity restricted to rearrangements and classical monotonicity properties (sometimes under some additional assumptions) are showed. It is proved that order continuity and lower uniform monotonicity properties for rearrangements of symmetric spaces together are equivalent to the classical lower local uniform monotonicity for any symmetric space over a sigma-finite complete and non-atomic measure space. It is also showed that in the case of order continuous symmetric spaces over a σ sigma-finite and complete measure space, upper local uniform monotonicity and its rearrangement counterpart shortly called ULUM* coincide.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Aequationes Mathematicae
ISSN
0001-9054
e-ISSN
—
Volume of the periodical
90
Issue of the periodical within the volume
1
Country of publishing house
CA - CANADA
Number of pages
13
Pages from-to
249-261
UT code for WoS article
000371829100023
EID of the result in the Scopus database
2-s2.0-84960433774