Semantic versus syntactic cutting planes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00458241" target="_blank" >RIV/67985840:_____/16:00458241 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4230/LIPIcs.STACS.2016.35" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.STACS.2016.35</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.STACS.2016.35" target="_blank" >10.4230/LIPIcs.STACS.2016.35</a>
Alternative languages
Result language
angličtina
Original language name
Semantic versus syntactic cutting planes
Original language description
In this paper, we compare the strength of the semantic and syntactic version of the cutting planes proof system. First, we show that the lower bound technique of Pudlák applies also to semantic cutting planes: the proof system has feasible interpolation via monotone real circuits, which gives an exponential lower bound on lengths of semantic cutting planes refutations. Second, we show that semantic refutations are stronger than syntactic ones. In particular, we give a formula for which any refutation in syntactic cutting planes requires exponential length, while there is a polynomial length refutation in semantic cutting planes. In other words, syntactic cutting planes does not p-simulate semantic cutting planes. We also give two incompatible integer inequalities which require exponential length refutation in syntactic cutting planes.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)
ISBN
978-3-95977-001-9
ISSN
1868-8969
e-ISSN
—
Number of pages
13
Pages from-to
1-13
Publisher name
Schloss Dagstuhl, Leibniz-Zentrum für Informatik
Place of publication
Dagstuhl
Event location
Orléans
Event date
Feb 17, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—