On the weak solution of the fluid-structure interaction problem for shear-dependent fluids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00458907" target="_blank" >RIV/67985840:_____/16:00458907 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-0348-0939-9_16" target="_blank" >http://dx.doi.org/10.1007/978-3-0348-0939-9_16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-0348-0939-9_16" target="_blank" >10.1007/978-3-0348-0939-9_16</a>
Alternative languages
Result language
angličtina
Original language name
On the weak solution of the fluid-structure interaction problem for shear-dependent fluids
Original language description
In this paper the coupled fluid-structure interaction problem for incompressible non-Newtonian shear-dependent fluid flow in two-dimensional time-dependent domain is studied. One part of the domain boundary consists of an elastic wall. Its temporal evolution is governed by the generalized string equation with action of the fluid forces by means of the Neumann type boundary condition. The aim of this work is to present the limiting process for the auxiliary (...) (...)-problem. The weak solution of this auxiliary problem has been studied in our recent work (Hundertmark-Zaušková, Lukáčová-Medvid’ová, Nečasová, On the existence of weak solution to the coupled fluid-structure interaction problem for non-Newtonian shear-dependent fluid, J. Math. Soc. Japan (in press)).
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Recent Developments of Mathematical Fluid Mechanics
ISBN
978-3-0348-0938-2
ISSN
2297-0320
e-ISSN
—
Number of pages
29
Pages from-to
291-319
Publisher name
Springer
Place of publication
Basel
Event location
Nara
Event date
Mar 5, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—