Existence of a weak solution to a nonlinear fluid-structure interaction problem with heat exchange
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00559954" target="_blank" >RIV/67985840:_____/22:00559954 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1080/03605302.2022.2068425" target="_blank" >https://doi.org/10.1080/03605302.2022.2068425</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/03605302.2022.2068425" target="_blank" >10.1080/03605302.2022.2068425</a>
Alternative languages
Result language
angličtina
Original language name
Existence of a weak solution to a nonlinear fluid-structure interaction problem with heat exchange
Original language description
In this paper, we study a nonlinear interaction problem between a thermoelastic shell and a heat-conducting fluid. The shell is governed by linear thermoelasticity equations and encompasses a time-dependent domain which is filled with a fluid governed by the full Navier-Stokes-Fourier system. The fluid and the shell are fully coupled, giving rise to a novel nonlinear moving boundary fluid-structure interaction problem involving heat exchange. The existence of a weak solution is obtained by combining three approximation techniques–decoupling, penalization and domain extension. In particular, the penalization and the domain extension allow us to use the methods already developed for compressible fluids on moving domains. In such a way, the proof is more elegant and the analysis is drastically simplified. Let us stress that this is the first time the heat exchange in the context of fluid-structure interaction problems is considered.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Partial Differential Equations
ISSN
0360-5302
e-ISSN
1532-4133
Volume of the periodical
47
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
45
Pages from-to
1591-1635
UT code for WoS article
000792721100001
EID of the result in the Scopus database
2-s2.0-85130108373