Penalization method for the Navier-Stokes-Fourier system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00561461" target="_blank" >RIV/67985840:_____/22:00561461 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1051/m2an/2022063" target="_blank" >https://doi.org/10.1051/m2an/2022063</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/m2an/2022063" target="_blank" >10.1051/m2an/2022063</a>
Alternative languages
Result language
angličtina
Original language name
Penalization method for the Navier-Stokes-Fourier system
Original language description
We apply the method of penalization to the Dirichlet problem for the Navier-Stokes-Fourier system governing the motion of a general viscous compressible fluid confined to a bounded Lipschitz domain. The physical domain is embedded into a large cube on which the periodic boundary conditions are imposed. The original boundary conditions are enforced through a singular friction term in the momentum equation and a heat source/sink term in the internal energy balance. The solutions of the penalized problem are shown to converge to the solution of the limit problem. In particular, we extend the available existence theory to domains with rough (Lipschitz) boundary. Numerical experiments are performed to illustrate the efficiency of the method.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA21-02411S" target="_blank" >GA21-02411S: Solving ill posed problems in the dynamics of compressible fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ESAIM. Mathematical Modelling and Numerical Analysis
ISSN
2822-7840
e-ISSN
2804-7214
Volume of the periodical
56
Issue of the periodical within the volume
6
Country of publishing house
FR - FRANCE
Number of pages
28
Pages from-to
1911-1938
UT code for WoS article
000853539100001
EID of the result in the Scopus database
2-s2.0-85137771495