All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Penalization method for the Navier-Stokes-Fourier system

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00561461" target="_blank" >RIV/67985840:_____/22:00561461 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1051/m2an/2022063" target="_blank" >https://doi.org/10.1051/m2an/2022063</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/m2an/2022063" target="_blank" >10.1051/m2an/2022063</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Penalization method for the Navier-Stokes-Fourier system

  • Original language description

    We apply the method of penalization to the Dirichlet problem for the Navier-Stokes-Fourier system governing the motion of a general viscous compressible fluid confined to a bounded Lipschitz domain. The physical domain is embedded into a large cube on which the periodic boundary conditions are imposed. The original boundary conditions are enforced through a singular friction term in the momentum equation and a heat source/sink term in the internal energy balance. The solutions of the penalized problem are shown to converge to the solution of the limit problem. In particular, we extend the available existence theory to domains with rough (Lipschitz) boundary. Numerical experiments are performed to illustrate the efficiency of the method.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA21-02411S" target="_blank" >GA21-02411S: Solving ill posed problems in the dynamics of compressible fluids</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ESAIM. Mathematical Modelling and Numerical Analysis

  • ISSN

    2822-7840

  • e-ISSN

    2804-7214

  • Volume of the periodical

    56

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    28

  • Pages from-to

    1911-1938

  • UT code for WoS article

    000853539100001

  • EID of the result in the Scopus database

    2-s2.0-85137771495