Bergman kernels, TYZ expansions and Hankel operators on the Kepler manifold
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00459547" target="_blank" >RIV/67985840:_____/16:00459547 - isvavai.cz</a>
Alternative codes found
RIV/47813059:19610/16:N0000150
Result on the web
<a href="http://dx.doi.org/10.1016/j.jfa.2016.04.018" target="_blank" >http://dx.doi.org/10.1016/j.jfa.2016.04.018</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2016.04.018" target="_blank" >10.1016/j.jfa.2016.04.018</a>
Alternative languages
Result language
angličtina
Original language name
Bergman kernels, TYZ expansions and Hankel operators on the Kepler manifold
Original language description
For a class of O(n+1,R)O(n+1,R) invariant measures on the Kepler manifold possessing finite moments of all orders, we describe the reproducing kernels of the associated Bergman spaces, discuss the corresponding asymptotic expansions of Tian–Yau–Zelditch, and study the relevant Hankel operators with conjugate holomorphic symbols. Related reproducing kernels on the minimal ball are also discussed. Finally, we observe that the Kepler manifold either does not admit balanced metrics, or such metrics are not unique.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F12%2F0426" target="_blank" >GAP201/12/0426: Function theory and operator theory in Bergman spaces and their applications</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
—
Volume of the periodical
271
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
264-288
UT code for WoS article
000377831100002
EID of the result in the Scopus database
2-s2.0-84968747316